A Class of Quasi-Quartic Trigonometric BÉZier Curves and Surfaces

نویسندگان

  • Lian YANG
  • Juncheng LI
  • Guohua CHEN
چکیده

A new kind of quasi-quartic trigonometric polynomial base functions with a shape parameter λ over the space Ω=span {1, sint, cost, sint2t, cos2t} is presented, and the corresponding quasi-quartic trigonometric Bézier curves and surfaces are defined by the introduced base functions. The quasi-quartic trigonometric Bézier curves inherit most of properties similar to those of quartic Bézier curves, and can be adjusted easily by using the shape parameter λ. The jointing conditions of two pieces of curves with G and C continuity are discussed. With the shape parameter chosen properly, the defined curves can express exactly any plane curves or space curves defined by parametric equation based on{1, sint, cost, sint2t, cos2t} and circular helix with high degree of accuracy without using rational form. The corresponding tensor product surfaces can also represent precisely some quadratic surfaces, such as sphere, paraboloid, cylindrical surfaces, and some complex surfaces. The relationship between quasi-quartic trigonometric Bézier curves and quartic Bézier curves is also discussed, the larger is parameter λ, and the more approach is the quasiquartic trigonometric Bézier curve to the control polygon. Examples are given to illustrate that the curves and surfaces can be used as an efficient new model for geometric design in the fields of CAGD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-Quartic Trigonometric Bézier Curves and Surfaces with Shape Parameters

In this paper a new kind of quasi-quartic trigonometric polynomial base functions with two shape parameters λ and μ over the space Ω = span {1, sin t, cos t, sin2t, cos2t, sin3t, cos3t} is presented and the corresponding quasi-quartic trigonometric Bézier curves and surfaces are defined by the introduced base functions. Each curve segment is generated by five consecutive control points. The sha...

متن کامل

TENSION QUARTIC TRIGONOMETRIC BÉZIER CURVES PRESERVING INTERPOLATION CURVES SHAPE

In this paper simple quartic trigonometric polynomial blending functions, with a tensionparameter, are presented. These type of functions are useful for constructing trigonometricB´ezier curves and surfaces, they can be applied to construct continuous shape preservinginterpolation spline curves with shape parameters. To better visualize objects and graphics atension parameter is included. In th...

متن کامل

Quartic Trigonometric Bézier Curve with a Shape Parameter

Analogous to the cubic Bézier curve, a quartic trigonometric Bézier curve with a shape parameter is presented in this paper. Each curve segment is generated by four consecutive control points. The shape of the curve can be adjusted by altering the values of shape parameters while the control polygon is kept unchanged. These curves are closer to the control polygon than the cubic Bézier curves, ...

متن کامل

A Class of QT Bézier Curve with Two Shape Parameters

In this paper a class of quartic trigonometric Bézier curve, called QT Bézier curve, with two shape parameters is presented. These curves not only inherit most properties of the usual quartic Bézier curves in the polynomial space, but also enjoy some other advantageous properties for shape modelling. The shape of the curve can be adjusted by altering the values of shape parameters while the con...

متن کامل

Conical representation of Rational Quartic Trigonometric Bèzier curve with two shape parameters

I. Introduction Rational spline is a commonly used spline function. In many cases the rational spline curves better approximating functions than the usual spline functions. It has been observed that many simple shapes including conic section and quadric surfaces can not be represented exactly by piecewise polynomials, whereas rational polynomials can exactly represent all conic sections and qua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012